A Molecular Analysis of Homo Sapiens’ Tumor-causing TP53 gene and associated P53 protein via Bioinformatics pipeline

Authors

  • Syed Awais Attique Research Centre for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan Author
  • Qurat- Ul-Ain Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan Author
  • Syed Asim Attique Shah Department of Computer Science, Air University Islamabad, Pakistan Author
  • Muhammad Hassan Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu Darul Iman, Malaysia Author
  • Sara Zahid Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan Author
  • Muhammad Usman Department of Computer Science, University of Agriculture, Faisalabad, 38000, Pakistan Author
  • Imran Shehzad Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan Author
  • Rabia Kiran Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan Author
  • Atif Amin Baig Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu Darul Iman, Malaysia Author
  • Ghulam Mustafa Department of Biochemistry, Government College University Faisalabad, 38060, Pakistan Author

Keywords:

TP53, Cancer-causing gene, Phosphorylation, P53 Yin Yang sites, Therapeutics targets

Abstract

Objective: The current study investigates characteristics and post-translational modification (PTM) sites of TP53  and its encoding protein (P53) through a bioinformatics pipeline. The findings of this study will provide a gateway to novel therapeutics strategies against numerous cancers followed by TP53 in humans. Methods: In this study, we utilized in-silico strategies to evaluate the PTM site response in P53 protein leading to cancer treatment. PSIPRED online tool predicted the secondary structure of P53 and interpret its robustness to mutation. ProtParam determined the characterized physiology and NetPhos v3.1 combined with Phos3D provided possible phosphorylation sites of P53. N- and O-glycosylation site identification evaluated by NetNGlyc 1.0 and NetOGlyc 4.0 servers, which is an important factor in determining cancerous activity level. YinOYang v1.2 predicted possible Yin-Yang sites involved in the carcinogenic activity of P53. Results: Human P53 protein has 42 phosphorylation sites (30 Ser + 11 Thr + 1 Tyr) followed by several kinases involved in its transcriptional activity. A total of 16 O-glycans and 2 N-glycans are determined in P53 protein. However, 8 possible YinYang sites are also predicted, which are involved in the oncogenic nature of P53 protein. ConclusionsTP53 genes are responsible for several cancers in humans, especially like i-Fraumeni (LFL) syndrome. Its encoding protein P53 shows carcinogenic activity in the human body. Several predicted YinYang sites as well as N- and O-glycans are involved in P53 protein’s carcinogenic behavior. These findings will be helpful in the treatment of cancer patients by targeting these identified sites.

Downloads

Download data is not yet available.

References

Abrusán, G. & Marsh, J. A. 2016. Alpha helices are more robust to mutations than beta strands. PLoS computational biology, 12.

Armenteros, J. J. A., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., Von Heijne, G. & Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology, 37, 420-423.

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W. & Noble, W. S. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic acids research, 37, W202-W208.

Bhurgri, Y. J. A. P. J. C. P. 2004. Karachi cancer registry data--implications for the national cancer control program of pakistan. 5, 77-82.

Birch, J. M., Hartley, A. L., Tricker, K. J., Prosser, J., Condie, A., Kelsey, A. M., Harris, M., Jones, P. H. M., Binchy, A. & Crowther, D. J. C. R. 1994. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. 54, 1298-1304.

Bønnelykke, K., Sleiman, P., Nielsen, K., Kreiner-Møller, E., Mercader, J. M., Belgrave, D., Den Dekker, H. T., Husby, A., Sevelsted, A., Faura-Tellez, G., Mortensen, L. J., Paternoster, L., Flaaten, R., Mølgaard, A., Smart, D. E., Thomsen, P. F., Rasmussen, M. A., Bonàs-Guarch, S., Holst, C., Nohr, E. A., Yadav, R., March, M. E., Blicher, T., Lackie, P. M., Jaddoe, V. W. V., Simpson, A., Holloway, J. W., Duijts, L., Custovic, A., Davies, D. E., Torrents, D., Gupta, R., Hollegaard, M. V., Hougaard, D. M., Hakonarson, H. & Bisgaard, H. 2014. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nature Genetics, 46, 51-55.

Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. & Bairoch, A. 2007. Uniprotkb/swiss-prot. Plant bioinformatics. Springer.

Butt, A. M., Feng, D., Idrees, M., Tong, Y. & Lu, J. 2012. Computational identification and modeling of crosstalk between Phosphorylation, O-β-glycosylation and Methylation of FoxO3 and implications for cancer therapeutics. International journal of molecular sciences, 13, 2918-2938.

Canman, C. E. & Lim, D.-S. 1998. The role of ATM in DNA damage responses and cancer. Oncogene, 17, 3301-3308.

Dumaz, N. & Meek, D. W. 1999. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. The EMBO journal, 18, 7002-7010.

Durek, P., Schudoma, C., Weckwerth, W., Selbig, J. & Walther, D. 2009. Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC bioinformatics, 10, 117.

Evans, D., Birch, J., Thorneycroft, M., Mcgown, G., Lalloo, F. & Varley, J. J. J. O. M. G. 2002. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. 39, 941-944.

Fuchs, S. Y., Fried, V. A. & Ronai, Z. E. 1998. Stress-activated kinases regulate protein stability. Oncogene, 17, 1483-1490.

Gupta, R., Jung, E. & Brunak, S. 2004. Prediction of N-glycosylation sites in human proteins.

Ikai, A. 1980. Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88, 1895-1898.

Lowe, S. 1999. Activation of p53 by oncogenes. Endocrine-related cancer, 6, 45-48.

Lundberg, A. S., Hahn, W. C., Gupta, P. & Weinberg, R. A. 2000. Genes involved in senescence and immortalization. Current opinion in cell biology, 12, 705-709.

Malik, S. A., Ahmad, I., Khan, T. S., Shakoori, A. R. & Nasir-Ud-Din 2007. Runx1 transcription repression and stability: interplay between phosphorylation and O-GlcNAc modification. PAKISTAN JOURNAL OF ZOOLOGY, 39, 299.

Manning, G., Whyte, D., Martinez, R., Hunter, T. & Sudarsanam, S. 2002. cAMP-dependent protein kinase from Plasmodium falciparum: an update. Trends in Biochemical Sciences, 27, 514-520.

Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M. & Hurwitz, D. I. 2015. CDD: NCBI's conserved domain database. Nucleic acids research, 43, D222-D226.

Mcguffin, L. J., Bryson, K. & Jones, D. T. 2000. The PSIPRED protein structure prediction server. Bioinformatics, 16, 404-405.

Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. 2003. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic acids research, 31, 3635-3641.

Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. 2014. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 884-886.

Protparam, E. 2017. ExPASy-ProtParam tool.

Rasheed, B. A., Mclendon, R. E., Herndon, J. E., Friedman, H. S., Friedman, A. H., Bigner, D. D. & Bigner, S. H. J. C. R. 1994. Alterations of the TP53 gene in human gliomas. 54, 1324-1330.

Rost, B., Yachdav, G. & Liu, J. 2004. The predictprotein server. Nucleic acids research, 32, W321-W326.

Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic acids research, 31, 3381-3385.

Seidah, N. G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S. B., Stifani, S., Basak, A., Prat, A. & Chrétien, M. 2003. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proceedings of the National Academy of Sciences, 100, 928-933.

She, Q.-B., Chen, N. & Dong, Z. 2000. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. Journal of Biological Chemistry, 275, 20444-20449.

Silva, J. M., Gonzalez, R., Dominguez, G., Garcia, J. M., España, P., Bonilla, F. J. G., Chromosomes & Cancer 1999. TP53 gene mutations in plasma DNA of cancer patients. 24, 160-161.

Simanon, N., Adisakwattana, P., Thiangtrongjit, T., Limpanont, Y., Chusongsang, P., Chusongsang, Y., Anuntakarun, S., Payungporn, S., Ampawong, S. & Reamtong, O. 2019. Phosphoproteomics analysis of male and female Schistosoma mekongi adult worms. Scientific reports, 9, 1-10.

Sohpal, V. K., Dey, A. & Singh, A. 2010. MEGA biocentric software for sequence and phylogenetic analysis: a review. International journal of bioinformatics research and applications, 6, 230-240.

Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester‐Christensen, M. B., Schjoldager, K. T. B., Lavrsen, K., Dabelsteen, S., Pedersen, N. B. & Marcos‐Silva, L. 2013. Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology. The EMBO journal, 32, 1478-1488.

Turenne, G. A. & Price, B. D. 2001. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity. BMC cell biology, 2, 12.

Wang, J., Torii, M., Liu, H., Hart, G. W. & Hu, Z.-Z. 2011. dbOGAP-an integrated bioinformatics resource for protein O-GlcNAcylation. BMC bioinformatics, 12, 91.

Wang, Y. & Eckhart, W. 1992. Phosphorylation sites in the amino-terminal region of mouse p53. Proceedings of the National Academy of Sciences, 89, 4231-4235.

Zandberg, W. F., Benjannet, S., Hamelin, J., Pinto, B. M. & Seidah, N. G. 2011. N-glycosylation controls trafficking, zymogen activation and substrate processing of proprotein convertases PC1/3 and subtilisin kexin isozyme-1. Glycobiology, 21, 1290-1300.

Downloads

Published

2021-04-25

Issue

Section

Original Article

How to Cite

A Molecular Analysis of Homo Sapiens’ Tumor-causing TP53 gene and associated P53 protein via Bioinformatics pipeline. (2021). Malaysian Journal of Human Genetics, 1(2), 44-56. https://mjhg.kk.usm.my/index.php/journal/article/view/18

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.