Genetic Crosslinks Between Autoimmune Diseases and Selective Immunoglobulin A Deficiency and Its Role in Assessing Cholera Vaccination Outcome
Keywords:
SIgA, cholera, autoimmune diseases, T1D, sIgAD, Vibrio choleraeAbstract
Polymorphic genes of human leukocyte antigen (HLA) class II were linked to an individual’s immune response and the development of autoimmune diseases. This is a common genetic background between selective immunoglobulin A deficiency (sIgAD) and autoimmune deficiency, including type-1 diabetes (T1D). sIgAD is considered the most common type of primary immunodeficiency (PID), and sIgAD individuals are defective in the production of sIgA, which is crucial in providing mucosal immunity against several enteric pathogens that enter the human body through the nasal or oral cavity affecting an individual’s overall gut. sIgA is found in body secretions, including breastmilk, mucus, and saliva. Significant levels of circulating sIgA in an individual’s mucus are crucial to a successful cholera vaccine; however, in breastfeeding mothers, the level of sIgA in the breastmilk provides herd immunity to their infants. Breastfeeding mothers that suffer from sIgAD cannot provide herd protection, which affects the cholera vaccine efficacy resulting in insignificant immunity observed in infants after direct vaccinations, thus making them dependent on their mothers for immunity. However, there is no routine check for the diagnosis of sIgAD, and the individuals are often asymptomatic. Therefore, the association of the disease with autoimmune diseases can serve as a tool in diagnosing the disease during cholera vaccination campaigns and sensitization.
Downloads
References
Aghamohammadi, A., Abolhassani, H., Biglari, M., Abolmaali, S., Moazzami, K., Tabatabaeiyan, M., Asgarian-Omran, H., Parvaneh, N., Mirahmadian, M., & Rezaei, N. (2011). Analysis of switched memory B cells in patients with IgA deficiency. International archives of allergy and immunology, 156(4), 462–468. https://doi.org/10.1159/000323903
Amaya-Uribe, L., Rojas, M., Azizi, G., Anaya, J. M., & Gershwin, M. E. (2019). Primary immunodeficiency and autoimmunity: A comprehensive review. Journal of autoimmunity, 99, 52–72. https://doi.org/10.1016/j.jaut.2019.01.011
Arkwright, P. D., Abinun, M., & Cant, A. J. (2002). Autoimmunity in human primary immunodeficiency diseases. Blood, 99(8), 2694–2702. https://doi.org/10.1182/blood.v99.8.2694
Boyaka P. N. (2017). Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. Journal of immunology (Baltimore, Md. : 1950), 199(1), 9–16. https://doi.org/10.4049/jimmunol.1601775
Catanzaro, J. R., Strauss, J. D., Bielecka, A., Porto, A. F., Lobo, F. M., Urban, A., Schofield, W. B., & Palm, N. W. (2019). IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Scientific reports, 9(1), 13574. https://doi.org/10.1038/s41598-019-49923-2
Cinicola, B. L., Pulvirenti, F., Capponi, M., Bonetti, M., Brindisi, G., Gori, A., De Castro, G., Anania, C., Duse, M., & Zicari, A. M. (2022). Selective IgA Deficiency and Allergy: A Fresh Look to an Old Story. Medicina (Kaunas, Lithuania), 58(1), 129. https://doi.org/10.3390/medicina58010129
Cipe, F. E., Doğu, F., Güloğlu, D., Aytekin, C., Polat, M., Biyikli, Z., & Ikincioğullari, A. (2013). B-cell subsets in patients with transient hypogammaglobulinemia of infancy, partial IgA deficiency, and selective IgM deficiency. Journal of investigational allergology & clinical immunology, 23(2), 94–100.
Cun, Y., Shi, L., Kulski, J. K., Liu, S., Yang, J., Tao, Y., Zhang, X., Shi, L., & Yao, Y. (2021). Haplotypic Associations and Differentiation of MHC Class II Polymorphic Alu Insertions at Five Loci With HLA-DRB1 Alleles in 12 Minority Ethnic Populations in China. Frontiers in genetics, 12, 636236. https://doi.org/10.3389/fgene.2021.636236
Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. (2019). Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 83:e00007-19. https://doi.org/10.1128/MMBR.00007-19
Ferreira, R. C., Pan-Hammarström, Q., Graham, R. R., Gateva, V., Fontán, G., Lee, A. T., Ortmann, W., Urcelay, E., Fernández-Arquero, M., Núñez, C., Jorgensen, G., Ludviksson, B. R., Koskinen, S., Haimila, K., Clark, H. F., Klareskog, L., Gregersen, P. K., Behrens, T. W., & Hammarström, L. (2010). Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nature genetics, 42(9), 777–780. https://doi.org/10.1038/ng.644
Haney, D. J., Lock, M. D., Gurwith, M., Simon, J. K., Ishioka, G., Cohen, M. B., Kirkpatrick, B. D., Lyon, C. E., Chen, W. H., Sztein, M. B., Levine, M. M., & Harris, J. B. (2018). Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection. Vaccine, 36(20), 2768–2773. https://doi.org/10.1016/j.vaccine.2018.04.011
Harris J. B. (2018). Cholera: Immunity and Prospects in Vaccine Development. The Journal of infectious diseases, 218(suppl_3), S141–S146. https://doi.org/10.1093/infdis/jiy414
Jacob, C. M., Pastorino, A. C., Fahl, K., Carneiro-Sampaio, M., & Monteiro, R. C. (2008). Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. Journal of clinical immunology, 28 Suppl 1, S56–S61. https://doi.org/10.1007/s10875-007-9163-2
Kubinak, J. L., & Round, J. L. (2016). Do antibodies select a healthy microbiota?. Nature reviews. Immunology, 16(12), 767–774. https://doi.org/10.1038/nri.2016.114
Raffel, L. J., Noble, J. A., & Rotter, J. I. (2008). HLA on chromosome 6: the story gets longer and longer. Diabetes, 57(3), 527–528. https://doi.org/10.2337/db07-
Leung, D. T., Chowdhury, F., Calderwood, S. B., Qadri, F., & Ryan, E. T. (2012). Immune responses to cholera in children. Expert review of anti-infective therapy, 10(4), 435–444. https://doi.org/10.1586/eri.12.23
Levinson, K. J., Baranova, D. E., & Mantis, N. J. (2016). A monoclonal antibody that targets the conserved core/lipid A region of lipopolysaccharide affects motility and reduces intestinal colonization of both classical and El Tor Vibrio cholerae biotypes. Vaccine, 34(48), 5833–5836. https://doi.org/10.1016/j.vaccine.2016.10.023
Lilic, D., & Sewell, W. A. (2001). IgA deficiency: what we should-or should not-be doing. Journal of clinical pathology, 54(5), 337–338. https://doi.org/10.1136/jcp.54.5.337
M Matsuda, K., Arioka, H., & Kobayashi, D. (2020). Risk factors of partial IgA deficiency among low serum IgA patients: a retrospective observational study. Central-European journal of immunology, 45(2), 189–194. https://doi.org/10.5114/ceji.2020.97908
Mantis, N. J., Rol, N., & Corthésy, B. (2011). Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal immunology, 4(6), 603–611. https://doi.org/10.1038/mi.2011.41
McDonald-McGinn, D. M., Sullivan, K. E., Marino, B., Philip, N., Swillen, A., Vorstman, J. A., Zackai, E. H., Emanuel, B. S., Vermeesch, J. R., Morrow, B. E., Scambler, P. J., & Bassett, A. S. (2015). 22q11.2 deletion syndrome. Nature reviews. Disease primers, 1, 15071. https://doi.org/10.1038/nrdp.2015.71
Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, et al (2014). Insights into vibrio cholerae intestinal colonization from Monitoring fluorescently Labeled Bacteria. PloS Pathlog 10(10): e1004405. http://dx.doi.org/10.1371/journal.ppat.1004405
Mohammadi, J., Ramanujam, R., Jarefors, S., Rezaei, N., Aghamohammadi, A., Gregersen, P. K., & Hammarström, L. (2010). IgA deficiency and the MHC: assessment of relative risk and microheterogeneity within the HLA A1 B8, DR3 (8.1) haplotype. Journal of clinical immunology, 30(1), 138–143. https://doi.org/10.1007/s10875-009-9336-2
Oen, K., Petty, R. E., & Schroeder, M. L. (1982). Immunoglobulin A deficiency: genetic studies. Tissue antigens, 19(3), 174–182. https://doi.org/10.1111/j.1399-0039.1982.tb01437.x
Orange, J. S., Glessner, J. T., Resnick, E., Sullivan, K. E., Lucas, M., Ferry, B., Kim, C. E., Hou, C., Wang, F., Chiavacci, R., Kugathasan, S., Sleasman, J. W., Baldassano, R., Perez, E. E., Chapel, H., Cunningham-Rundles, C., & Hakonarson, H. (2011). Genome-wide association identifies diverse causes of common variable immunodeficiency. The Journal of allergy and clinical immunology, 127(6), 1360–7.e6. https://doi.org/10.1016/j.jaci.2011.02.039
Pabst O. (2012). New concepts in the generation and functions of IgA. Nature reviews. Immunology, 12(12), 821–832. https://doi.org/10.1038/nri3322
Rachid, R., Castigli, E., Geha, R. S., & Bonilla, F. A. (2006). TACI mutation in common variable immunodeficiency and IgA deficiency. Current allergy and asthma reports, 6(5), 357–362. https://doi.org/10.1007/s11882-996-0004-9
Sharmila, T., & Thomas, T. A. (2018). Pathogenesis of Cholera: Recent Prospectives in Rapid Detection and Prevention of Cholera. In (Ed.), Bacterial Pathogenesis and Antibacterial Control. IntechOpen. https://doi.org/10.5772/intechopen.74071
Shkalim, V., Monselize, Y., Segal, N., Zan-Bar, I., Hoffer, V., & Garty, B. Z. (2010). Selective IgA deficiency in children in Israel. Journal of clinical immunology, 30(5), 761–765. https://doi.org/10.1007/s10875-010-9438-x
Soheili, H., Abolhassani, H., Arandi, N., Khazaei, H. A., Shahinpour, S., Hirbod-Mobarakeh, A., Rezaei, N., & Aghamohammadi, A. (2013). Evaluation of natural regulatory T cells in subjects with selective IgA deficiency: from senior idea to novel opportunities. International archives of allergy and immunology, 160(2), 208–214. https://doi.org/10.1159/000339867
Sutherland, D. B., Suzuki, K., & Fagarasan, S. (2016). Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunological reviews, 270(1), 20–31. https://doi.org/10.1111/imr.12384
Svennerholm, A. M., Jertborn, M., Gothefors, L., Karim, A. M., Sack, D. A., & Holmgren, J. (1984). Mucosal antitoxic and antibacterial immunity after cholera disease and after immunization with a combined B subunit-whole cell vaccine. The journal of infectious diseases, 149(6), 884–893. https://doi.org/10.1093/infdis/149.6.884
Tait, B. D., Garrido, F., & Tilanus, M. (2007). 14th International HLA and Immunogenetics Workshop: report on HLA expression and cancer. Tissue antigens, 69 Suppl 1, 245–247. https://doi.org/10.1111/j.1399-0039.2006.774_1.x
Trowsdale J. (2011). The MHC, disease and selection. Immunology letters, 137(1-2), 1–8. https://doi.org/10.1016/j.imlet.2011.01.002
Uddin, T., Harris, J. B., Bhuiyan, T. R., Shirin, T., Uddin, M. I., Khan, A. I., Chowdhury, F., LaRocque, R. C., Alam, N. H., Ryan, E. T., Calderwood, S. B., & Qadri, F. (2011). Mucosal immunologic responses in cholera patients in Bangladesh. Clinical and vaccine immunology, 18(3), 506–512. https://doi.org/10.1128/CVI.00481-10
Urbonas, V., Sadauskaite, J., Cerkauskiene, R., Kaminskas, A., Mäki, M., & Kurppa, K. (2016). Population-Based Screening for Selective Immunoglobulin A (IgA) Deficiency in Lithuanian Children Using a Rapid Antibody-Based Fingertip Test. Medical science monitor: international medical journal of experimental and clinical research, 22, 4773–4778. https://doi.org/10.12659/msm.898269
Vo Ngoc, D. T., Krist, L., van Overveld, F. J., & Rijkers, G. T. (2017). The long and winding road to IgA deficiency: causes and consequences. Expert review of clinical immunology, 13(4), 371–382. https://doi.org/10.1080/1744666X.2017.1248410
Wang, N., Shen, N., Vyse, T. J., Anand, V., Gunnarson, I., Sturfelt, G., Rantapää-Dahlqvist, S., Elvin, K., Truedsson, L., Andersson, B. A., Dahle, C., Ortqvist, E., Gregersen, P. K., Behrens, T. W., & Hammarström, L. (2011). Selective IgA deficiency in autoimmune diseases. Molecular medicine (Cambridge, Mass.), 17(11-12), 1383–1396. https://doi.org/10.2119/molmed.2011.00195
Wang, Z., Lazinski, D. W., & Camilli, A. (2016). Immunity Provided by an Outer Membrane Vesicle Cholera Vaccine Is Due to O-Antigen-Specific Antibodies Inhibiting Bacterial Motility. Infection and immunity, 85(1), e00626-16. https://doi.org/10.1128/IAI.00626-16
Wang, Z., Yunis, D., Irigoyen, M., Kitchens, B., Bottaro, A., Alt, F. W., & Alper, C. A. (1999). Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clinical immunology (Orlando, Fla.), 91(3), 263–270. https://doi.org/10.1006/clim.1999.4702
World Health Organization (2018). Cholera vaccine: WHO position paper, August 2017 - Recommendations. Vaccine, 36(24), 3418–3420. https://doi.org/10.1016/j.vaccine.2017.09.034
Yazdani, R., Azizi, G., Abolhassani, H., & Aghamohammadi, A. (2017). Selective IgA Deficiency: Epidemiology, Pathogenesis, Clinical Phenotype, Diagnosis, Prognosis and Management. Scandinavian journal of immunology, 85(1), 3–12. https://doi.org/10.1111/sji.12499
Yazdani, R., Latif, A., Tabassomi, F., Abolhassani, H., Azizi, G., Rezaei, N., & Aghamohammadi, A. (2015). Clinical phenotype classification for selective immunoglobulin A deficiency. Expert review of clinical immunology, 11(11), 1245–1254. https://doi.org/10.1586/1744666X.2015.1081565
Yel L. (2010). Selective IgA deficiency. Journal of clinical immunology, 30(1), 10–16. https://doi.org/10.1007/s10875-009-9357-x
Zhang, J., van Oostrom, D., Li, J., & Savelkoul, H. (2021). Innate Mechanisms in Selective IgA Deficiency. Frontiers in immunology, 12, 649112. https://doi.org/10.3389/fimmu.2021.649112
Published
Issue
Section
License
Copyright (c) 2024 Malaysian Journal of Human Genetics
This work is licensed under a Creative Commons Attribution 4.0 International License.