Significance of Host Defence Genetics Initiative in Pneumonia
Keywords:
Pneumonia, streptococcus pneumoniae, pneumococcal disease, genetic diseasesAbstract
Pneumonia, a prevalent and life-threatening respiratory infection, continues to pose a significant global health challenge. This article provides a comprehensive review of recent advances in understanding the host defence mechanism of pneumonia. The genetic interaction between innate and adaptive immunity plays a vital role in the functioning of the human immune system. The range of genetic markers that influence an individual's response to the infection is one of the primary elements adding to the complexity of pneumonia. One of the most crucial things to consider when examining the genetics of immune activation is the signalling mechanisms initiating immunological responses. GWAS includes extensive analyses of DNA variations across the whole genome, allowing for the identification of genetic loci and potentially causative genes. Understanding the interactions between these genetic characteristics and the host's immune system is necessary to develop effective treatment approaches. Integrating genetic information with other characteristics, such as microbiological and environmental factors, is a crucial area of focus in pneumonia research. Advanced gene editing and therapeutic techniques have promising futures in pneumonia genetic research.
Downloads
References
Alrashidi, H. (2016). The Interplay of Complement Proteins C1q and Factor H University of Leicester. Thesis. University of Leicester. Available at: https://hdl.handle.net/2381/36299 (Accessed: 20 May 2024)
Ayegbayo, F. (2018). A modern approach to disease classification and clinical coding. [Online]. Available at: https://www.lulu.com/ (Accessed: 20 May 2024)
Bartlett, J. A., Fischer, A. J., & Paul Jr, B. (2008). Innate immune functions of the airway epithelium. Trends in Innate Immunity, 15, 147-163.
Baumgarth, N., Tung, J. W., & Herzenberg, L. A. (2005). Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer seminars in immunopathology, 2005. Springer, 347-362.
Berg, D., Bonifacino, E., Bundrick, J. D., Grubenhoff, J. A., Haskell, M. H., Jacob, A., Jaffe, M. M., Rebecca Jones, M., Kwan, J., & Meyers, D. L. (2022). SIDM2022 15th Annual International Conference. Diagnosis, Vol. 10 (Issue 2), pp. A1-A77. https://doi.org/10.1515/dx-2023-0006
Bordon, J., Aliberti, S., Fernandez-Botran, R., Uriarte, S. M., Rane, M. J., Duvvuri, P., Peyrani, P., Morlacchi, L. C., Blasi, F., & Ramirez, J. A. (2013). Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. International Journal of Infectious Diseases, 17(2), e76-e83.
Brodin, P., & Davis, M. M. (2017). Human immune system variation. Nature reviews immunology, 17(1), 21-29.
Broere, F., & van Eden, W. (2019). T cell subsets and T cell-mediated immunity. Nijkamp and Parnham's Principles of Immunopharmacology, 23-35.
Bruzeau, C., Cook-Moreau, J., Pinaud, E., & Le Noir, S. (2022). Contribution of immunoglobulin enhancers to b cell nuclear organization. Frontiers in Immunology, 13, 877930.
Chatzi, M., Papanikolaou, J., Makris, D., Papathanasiou, I., Tsezou, A., Karvouniaris, M., & Zakynthinos, E. (2018). Toll-like receptor 2, 4 and 9 polymorphisms and their association with ICU-acquired infections in Central Greece. Journal of Critical Care, 47, 1-8.
Chiche, J.-D., Siami, S., Dhainaut, J.-F., & Mira, J.-P. (2001). Cytokine polymorphisms and susceptibility to severe infectious diseases. Sepsis, 4, 209-215.
Cicchinelli, S., Pignataro, G., Gemma, S., Piccioni, A., Picozzi, D., Ojetti, V., Franceschi, F., & Candelli, M. (2024). PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. International Journal of Molecular Sciences, 25(2), 962.
Crux, N. B., & Elahi, S. (2017). Human leukocyte antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Frontiers in immunology, 8, 832.
Dallaire, F., Ouellet, N., Bergeron, Y., Turmel, V., Gauthier, M. C., Simard, M., & Bergeron, M. G. (2001). Microbiological and inflammatory factors associated with the development of pneumococcal pneumonia. The Journal of infectious diseases, 184(3), 292-300.
Den Boon, S., Bateman, E., Enarson, D., Borgdorff, M., Verver, S., Lombard, C., Irusen, E., Beyers, N., & White, N. (2005). Development and evaluation of a new chest radiograph reading and recording system for epidemiological surveys of tuberculosis and lung disease. The International Journal of Tuberculosis and Lung Disease, 9(10), 1088-1096.
Devenish, L. P., Mhlanga, M. M., & Negishi, Y. (2021). Immune regulation in time and space: the role of local-and long-range genomic interactions in regulating immune responses. Frontiers in immunology, 12, 662565.
Druszczyńska, M., Godkowicz, M., Kulesza, J., Wawrocki, S., & Fol, M. (2022). Cytokine receptors—regulators of antimycobacterial immune response. International Journal of Molecular Sciences, 23(3), 1112.
Eisele, N. A., & Anderson, D. M. (2011). Host defense and the airway epithelium: frontline responses that protect against bacterial invasion and pneumonia. Journal of Pathogens, 2011.
Franquet, T. (2001). Imaging of pneumonia: trends and algorithms. European Respiratory Journal, 18(1), 196-208.
Gjini, E. (2017). Geographic variation in pneumococcal vaccine efficacy estimated from dynamic modeling of epidemiological data post-PCV7. Scientific Reports, 7(1), 3049.
Gómez, M. I., & Prince, A. (2008). Bacterial interactions with the airway epithelium. The Pulmonary Epithelium in Health and Disease, 253-273.
Gutierrez-Arcelus, M., Rich, S. S., & Raychaudhuri, S. (2016). Autoimmune diseases—connecting risk alleles with molecular traits of the immune system. Nature Reviews Genetics, 17(3), 160-174.
Hakansson, A., Orihuela, C., & Bogaert, D. (2018). Bacterial-host interactions: physiology and pathophysiology of respiratory infection. Physiological Reviews, 98(2), 781-811.
Hewson, C. A., Jardine, A., Edwards, M. R., Laza-Stanca, V., & Johnston, S. L. (2005). Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. Journal of Virology, 79(19), 12273-12279.
Hodges, E., Krishna, M., Pickard, C., & Smith, J. (2003). Diagnostic role of tests for T cell receptor (TCR) genes. Journal of Clinical Pathology, 56(1), 1.
Holgate, S. T. (2012). Innate and adaptive immune responses in asthma. Nature Medicine, 18(5), 673-683.
Hu, X., & Ivashkiv, L. B. (2009). Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity, 31(4), 539-550.
Jobin, C., & Sartor, R. B. (2000). The IκB/NF-κB system: a key determinant of mucosal inflammation and protection. American Journal of Physiology-Cell Physiology, 278(3), C451-C462.
Karetzky, M., Cunha, B. A., Brandstetter, R. D., Epifano, L. D., & Brandstetter, R. D. (1993). Historical Aspects of Pneumonia. The Pneumonias, 1-14.
Kato, A., Hulse, K. E., Tan, B. K., & Schleimer, R. P. (2013). B-lymphocyte lineage cells and the respiratory system. Journal of Allergy and Clinical Immunology, 131(4), 933-957.
Kinane, D., & Hart, T. (2003). Genes and gene polymorphisms associated with periodontal disease. Critical Reviews in Oral Biology & Medicine, 14(6), 430-449.
Kishnani, P. S., Beckemeyer, A. A., & Mendelsohn, N. J. (2012). The new era of Pompe disease: advances in the detection, understanding of the phenotypic spectrum, pathophysiology, and management. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 2012. Wiley Online Library, 1-7.
Kumar, V. (2020). Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Frontiers in Immunology, 11, 1722.
Le, J., Kulatheepan, Y., & Jeyaseelan, S. (2023). Role of toll-like receptors and nod-like receptors in acute lung infection. Frontiers in Immunology, 14, 1249098.
Legendre, M., Zaragosi, L.-E., & Mitchison, H. M. (2021). Motile cilia and airway disease. Seminars in cell & developmental biology , 2021. Elsevier, 19-33.
Leist, S. R., & Baric, R. S. (2018). Giving the genes a shuffle: using natural variation to understand host genetic contributions to viral infections. Trends in Genetics, 34(10), 777-789.
Madhi, S. A., De Wals, P., Grijalva, C. G., Grimwood, K., Grossman, R., Ishiwada, N., Lee, P.-I., Nascimento-Carvalho, C., Nohynek, H., & O’Brien, K. L. (2013). The burden of childhood pneumonia in the developed world: a review of the literature. The Pediatric Infectious Disease Journal, 32(3), e119-e127.
Malo, D., & Skamene, E. (1994). Genetic control of host resistance to infection. Trends in Genetics, 10(10), 365-371.
Manthiram, K., Zhou, Q., Aksentijevich, I., & Kastner, D. L. (2017). The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nature Immunology, 18(8), 832-842.
Martinez-Garcia, M. A., Faner, R., Oscullo, G., de la Rosa, D., Soler-Cataluña, J.-J., Ballester, M., & Agusti, A. (2020). Inhaled steroids, circulating eosinophils, chronic airway infection, and pneumonia risk in chronic obstructive pulmonary disease. A network analysis. American Journal of Respiratory and Critical Care Medicine, 201(9), 1078-1085.
Martinez, I., Oliveros, J. C., Cuesta, I., De la Barrera, J., Ausina, V., Casals, C., De Lorenzo, A., García, E., García-Fojeda, B., & Garmendia, J. (2017). Apoptosis, Toll-like, RIG-I-like and NOD-like receptors are pathways jointly induced by diverse respiratory bacterial and viral pathogens. Frontiers in Microbiology, 8, 276.
McAllister, D. A., Liu, L., Shi, T., Chu, Y., Reed, C., Burrows, J., Adeloye, D., Rudan, I., Black, R. E., & Campbell, H. (2019). Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. The Lancet Global Health, 7(1), e47-e57.
Mcdevitt, H. O., & Benacerraf, B. (1969). Genetic control of specific immune responses. Advances in Immunology, 11, 31-74.
Menendez, R., Torres, A., Zalacain, R., Aspa, J., Martin, V., Borderías, L., Benitez, M., Ruiz-Manzano, J., Blanquer, J., & Pérez, D. (2004). Risk factors of treatment failure in community acquired pneumonia: implications for disease outcome. Thorax, 59(11), 960.
Mercier, L. S. (2014). The ecole de santé: anatomy and disease concepts. To See with a Better Eye: A Life of RTH Laennec, 376, 23.
O’Grady, K.-A. F., Torzillo, P. J., Frawley, K., & Chang, A. B. (2014). The radiological diagnosis of pneumonia in children. Pneumonia, 5, 38-51.
Parker, D., & Prince, A. (2011). Innate immunity in the respiratory epithelium. American Journal of Respiratory Cell and Molecular Biology, 45(2), 189-201.
Rautanen, A., Mills, T. C., Gordon, A. C., Hutton, P., Steffens, M., Nuamah, R., Chiche, J.-D., Parks, T., Chapman, S. J., & Davenport, E. E. (2015). Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. The Lancet Respiratory Medicine, 3(1), 53-60.
Rawlings, D. J., Schwartz, M. A., Jackson, S. W., & Meyer-Bahlburg, A. (2012). Integration of B cell responses through Toll-like receptors and antigen receptors. Nature Reviews Immunology, 12(4), 282-294.
Rego, R. T., Morris, E. C., & Lowdell, M. W. (2019). T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy, 21(3), 341-357.
Rijkers, G. T., & Meek, B. (2019). Antibody diversity and B lymphocyte-mediated immunity. Nijkamp and Parnham's Principles of Immunopharmacology, 37-53.
Rogan, M. P., Geraghty, P., Greene, C. M., O'Neill, S. J., Taggart, C. C., & McElvaney, N. G. (2006). Antimicrobial proteins and polypeptides in pulmonary innate defence. Respiratory Research, 7(1), 1-11.
Roux, H. M., Marouf, A., Dutrieux, J., Charmeteau-De Muylder, B., Figueiredo-Morgado, S., Avettand-Fenoel, V., Cuvelier, P., Naudin, C., Bouaziz, F., & Geri, G. (2023). Genetically determined thymic function affects strength and duration of immune response in COVID patients with pneumonia. Science Advances, 9(38), eadh7969.
Scott, J. A. G., Wonodi, C., Moïsi, J. C., Deloria-Knoll, M., DeLuca, A. N., Karron, R. A., Bhat, N., Murdoch, D. R., Crawley, J., & Levine, O. S. (2012). The definition of pneumonia, the assessment of severity, and clinical standardization in the Pneumonia Etiology Research for Child Health study. Clinical Infectious Diseases, 54(suppl_2), S109-S116.
Shah, P.L., Herth, F.J., Lee, Y.G., & Criner, G.J. (2018). Essentials of Clinical Pulmonology (1st ed.). CRC Press. https://doi.org/10.1201/9781315113807
Singh, R., Singh, S., Sharma, P. K., Singh, U. P., Briles, D. E., Hollingshead, S. K., & Lillard Jr, J. W. (2010). Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A. PLoS One, 5(2), e9432.
Siskind, G. W., & Benacerraf, B. (1969). Cell selection by antigen in the immune response. Advances in Immunology, 10, 1-50.
Smatti, M. K., Alkhatib, H. A., Al Thani, A. A., & Yassine, H. M. (2022). Will host genetics affect the response to SARS-CoV-2 vaccines? historical precedents. Frontiers in Medicine, 9, 802312.
Spínola, H. (2016). HLA loci and respiratory infectious diseases. Journal of Respiratory Research, 2, 56-66.
Steel, H. C., Cockeran, R., Anderson, R., & Feldman, C. (2013). Overview of community-acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease. Mediators of inflammation, 2013.
Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(11), 2563-2582.
Ulvestad, E. (2009). Cooperation and conflict in host–microbe relations. Apmis, 117(5‐6), 311-322.
Varadé, J., Magadán, S., & González-Fernández, Á. (2021). Human immunology and immunotherapy: main achievements and challenges. Cellular & Molecular Immunology, 18(4), 805-828.
Wardlaw, T., Salama, P., Johansson, E. W., & Mason, E. (2006). Pneumonia: the leading killer of children. The Lancet, 368(9541), 1048-1050.
Wells, C. A., Ravasi, T., Faulkner, G. J., Carninci, P., Okazaki, Y., Hayashizaki, Y., Sweet, M., Wainwright, B. J., & Hume, D. A. (2003). Genetic Control of the Innate Immune Response. BMC immunology, 4(1), 1-18.
Wilson, M., Wilson, P. J., Wilson, M., & Wilson, P. J. (2021). Close Encounters of the Microbial Kind: Everything You Need to Know About Common Infections, Springer: Cham, Switzerland, 2021; pp. 3–48.
Zhang, Q., Bastard, P., Cobat, A., & Casanova, J.-L. (2022). Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 603(7902), 587-598.
Zinserling, V., & Zinserling, V. (2021). Lobar Pneumonia. Infectious Pathology of the Respiratory Tract, 79-88.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Malaysian Journal of Human Genetics
This work is licensed under a Creative Commons Attribution 4.0 International License.